人教版平均数的教学设计
作为一位优秀的人民教师,时常需要用到教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么你有了解过教学设计吗?以下是小编为大家整理的人教版平均数的教学设计,欢迎大家分享。
人教版平均数的教学设计1一、教学目标
(一)知识与技能
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
二、教学重难点
教学重点:理解平均数的含义,掌握求平均数的方法。
教学难点:借助“移多补少”的方法理解平均数的意义。
三、教学准备
课件、实物投影。
四、教学过程
(一)创设情境
1.谈话引入。
以幻灯片形式出示教师家的书橱。
现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。
2.感知课题。
(1)学生思考,想象移动的过程。
(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?
(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)
(二)探究新知
1.引发质疑,探索新知。
教师:看到这个课题,你想通过这节课学习到哪些知识?
预设:
(1)平均数是一个什么数?
(2)怎样计算平均数?
(3)平均数在生活中有什么用?
2.理解含义,探求方法。
出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。
仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?
预设:
(1)小红比小兰多收集多少个瓶子?
(2)小明再给小亮几瓶,他俩的瓶子就一样多?
(3)他们平均每人收集了多少个瓶子?
你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?
学生汇报交流。
小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。
小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。
(14+12+11+15)÷4=13(个)。
【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。
3.理解平均数的含义。
教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?
引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。
预设:
(1)本周平均最高气温6摄氏度。
(2)三年级学生的平均身高是140厘米。
(3)四年级2班五位同学平均每人捐10本图书。
(4)李莉同学平均每天上学路上花费15分钟。
【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。
(三)知识应用
1.判断。
(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。
( )
(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。
( )
(3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。
( )
【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。
2.选择。
小明家平均每月用水( )吨。
A.(16+24+36+27)÷365
B.(16+24+36+27)÷12
C.(16+24+36+27)÷4
【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。
(四)全课小结
今天你有什么收获?
再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?
人教版平均数的教学设计2导学目标:
1.在丰富具体情境中,感受求平均数是解决一些问题的需要,体会平均数的意义。
2. 学会计算简单数据的平均数。
3、能从现实生活中发现问题,并根据需要收集有用的信息,培养同学们的策略意识和应用数学解决实际问题的能力。
重 点:学会求简单数据的平均数。
难 点:理解平均数的意义。
教学资源:自制课件、彩笔及笔筒
教学过程:
一.创设情境,提出问题
1、谈话:同学们,课间休息时玩什么?
(丢沙包、踢毽子、跳皮筋、跳绳等)
课前让同学们记录自己一分钟跳绳的次数,请一个小组汇报。
男生和女生谁获胜了?怎样比较?(求总数)
2、你玩过套圈的游戏吗?三年级第一小组的同学进行了男、女生套圈比赛,(出示成绩统计图),从图中你能获得什么信息?
你觉得男生成绩好还是女生成绩好?比什么?怎样比?
A、比男、女生的总数(质疑不公平)
B、套的最多的、最少的都是女生,不好比。
C、比男生还是女生套的准?
二.自主探索,解决问题
1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?
小组内说说自己的想法。
< ……此处隐藏24681个字……情景(PPT)出示男女各3人一组
姓名
个数
小军
15
小强
15
小明
15
姓名
个数
小雨
18
小涵
17
小敏
16
女看哪组成绩好?怎么比?
可以比总数,可以比平均数,指名学生汇报,并说明计算方法。
2、人数不同
男生组有一个同学不服气,真正的高手没上,小飞同学每分钟踢了19个
男生队女生队
姓名
个数
小雨
18
小涵
17
小敏
16
姓名
个数
小军
15
小强
15
小明
15
小飞
19(一)现在比总数的话公平吗?
(二)怎么比?比平均数比较公平。
(三)先不计算,观察这组数据的特点,猜测一下,小飞的加入,男生队的成绩会发生什么变化?平均数会超过15个吗?会超过19个吗?平均数会在什么范围?
(四)请计算出新的男生队的平均成绩。
1、学生汇报并板书算式
(19+15+15+15)÷4=16(个)
2、对比观察,小飞的加入平均数有什么样的变化?平均数变大了。
3、为了公平起见,女生队也加入了一个队员,想一想,如果要保持领先,至少要踢多少个?
姓名
个数
小军
15
小强
15
小明
15
小飞
19
姓名
个数
小雨
18
小涵
17
小敏
16
小云
9你能计算出现在女生队的平均成绩吗?
随着小云同学的加入,平均数有什么变化?
师小结:平均数会受到较大数据或较小数据的影响。
4、质疑:平均数是16个男生队是每个人都踢了16个吗?女生队是每个人都提了17个吗?
5、小结:16这个平均数表示男生队的一般水平,17这个平均数表示女生队的一般水平。
6、结合平均成绩、平均身高、平均工资等素材理解平均数的意义。
如通过平均身高可以了解身体生长状况,平均成绩可以找到差距。
7、生活中的平均数,你还知道哪些?
8、小结:平均数可以表示一组数据的一般水平,也可以用来个数不同数据的比较。
三、巩固练习。
接下来老师看看你们能不能运用所学平均数的知识解决实际问题。
1、纸条,师估计平均长度是30厘米,你们同意吗?
2、我从体育老师哪里了解到咱们班孩子的平均身高是136厘米,有没有可能有孩子的身高是145厘米?125厘米?是不是咱们班每一个孩子的身高都是136厘米?为了让大家理解更透彻,老师带来了一张珍贵的照片。
3、讲一个平均数的小故事,一个老爷爷,70岁了,在看到报纸上说中国男性的平均寿命是71岁时,伤心地哭了,你们知道老爷爷为什么哭了吗?请你用学到的平均数的知识安慰安慰老爷爷。
4、平均水深是110厘米,小华身高140厘米学游泳,有危险吗?
四、全课总结,说说你都学到了什么,你有什么收获?
板书设计:
平均数
移多补少先合后分
(15+15+19+15)÷4
=64÷4
=16(个)
一般水平
人教版平均数的教学设计15教学要求:
1、通过练习,进一步巩固求平均数的方法。
2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
教学重点:
解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
教具学具准备:
课件、统计。
教学过程:
一、理解平均数意义
“1”:说一说题目说的是一件什么事情?
平均水深140厘米是什么意思?是不是处处水深140厘米?
(不是,是有的地方比140厘米深,有的地方比140厘米浅)
“2”:自己看题,同桌讨论。
全班交流:
你认为哪些平均数是合理的,哪些是不合理的,为什么?
(1、3合理,2不合理)
二、求平均数的练习:
1、“3、4、6、7”题。
“3”:从表格里你了解到哪些信息?
独立解答(1)、(2),全班交流。
看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?
“4”:
(1)先算一算三年级平均每组植树的棵数。
假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?
假如是6棵呢?为什么?
看着这张统计图,你能不能给出平均数的范围?
(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?
“6”:(1)同桌讨论,可以怎么估计?
介绍自己是怎么估计的。
(选取6个数据中处于较中间位置的一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)
(2)你还能说出这个小组同学身高的哪些情况?
“7”:独立练习。
“你还发现什么?”尽量让学生从多角度说一说。
2、“5、8”题。
“8”:先说一说这一题的解决过程。
学生以小组为单位,调查、记录、解答问题。
“5”:课堂上老师指导说清要求,课后学生完成。
三、“你知道吗?”
举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?
学生计算:(47+78+80+81+82+82)÷6=75
去掉以后,是多少呢?
学生计算(78+80+81+82)÷4 约为80分
看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。
教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。
文档为doc格式